# Mark Scheme (Results) 

January 2017

International GCSE
Chemistry (4CH0) Paper 2C
Pearson Edexcel Certificate in
Chemistry (KCHO) Paper 2C

## edexcel

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code 4CHO_2C_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

| $\begin{array}{c}\text { Question } \\ \text { number }\end{array}$ | Answer | Notes | Marks |
| :---: | :--- | :--- | :---: |
| 1 (a) | air | $\begin{array}{l}\text { ACCEPT H2 } \\ \text { IGNORE H }\end{array}$ |  |
| (b) | hydrogen | $\begin{array}{l}\text { ACCEPT Cl } \\ 2\end{array}$ |  |
| IGNORE Cl |  |  |  |$]$|  |
| :---: |
| (c) |
| (d) |
| chlorine |
| (e) |

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
2 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
(both are) solids \\
AND \\
(both) form alkaline solutions (in water) \\
(both are) gases \\
AND \\
(both) form acidic solutions (in water)
\end{tabular} \& ALLOW (both are) slightly soluble \& 1

1 <br>

\hline | (b) (i) |
| :--- |
| (ii) | \& | the oxide is solid |
| :--- |
| the oxide forms an acidic solution (in water) | \& \& | $1$ |
| :--- |
| 1 | <br>


\hline (c) \& | M1 the lamp does not light up |
| :--- |
| M2 (so this shows that) phosphorus/it does not conduct electricity | \& | ACCEPT |
| :--- |
| reverse arguments | \& 2 <br>

\hline \& \& Total \& 6 <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 3 (a) \& \begin{tabular}{l}
M1 calcium is the most reactive; titanium is the second most reactive; tin is the least reactive \\
OR \\
calcium most reactive AND tin least reactive \\
M2 (because) titanium displaces tin \\
M3 (and because) titanium does not displace calcium
\end{tabular} \& \begin{tabular}{l}
ACCEPT Ca > Ti > Sn \\
ACCEPT replaces \\
ACCEPT replaces
\end{tabular} \& 3 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
\[
2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}
\] \\
M1 aluminium \\
M2 because it has gained oxygen \\
OR \\
because it has lost electrons \\
OR \\
because its oxidation number has increased \\
OR \\
because its oxidation number has changed from 0 to +3 \\
M1 (powders have) larger surface area \\
M2 (therefore) faster reaction
\end{tabular} \& \begin{tabular}{l}
ACCEPT multiples and halves \\
M2 DEP on M1 \\
ACCEPT reverse arguments IGNORE references to collisions between particles
\end{tabular} \& 1
2

2 <br>
\hline \& \& Total \& 8 <br>
\hline
\end{tabular}

| Question <br> number | Answer | Notes | Marks |
| :---: | :--- | :---: | :---: |
| 4 (a) | D $\left(\mathrm{NH}_{4}^{+}\right)$ |  | 1 |
| (b) | D ( $\left.\mathrm{I}^{-}\right)$ |  | 1 |
| $(\mathrm{c})$ | A (carbonate) |  | 1 |
| (d) | C (blue, green, brown) |  | 1 |
| $(\mathrm{e})$ | A (carbonate) |  | 1 |
|  |  | Total | $\mathbf{5}$ |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 5 (a) |  | 1 mark for each correct ion <br> IGNORE charges on ion <br> ALLOW any combination of dots and crosses <br> Diagram showing sharing of electrons scores 0 | 2 |
| (b) |  | M1 all four bonding pairs correct, and only 8 electrons shown in outer shell of carbon <br> M2 all non-bonding pairs correct <br> IGNORE inner shells even if incorrect <br> If rings are drawn then both bonding electrons must be in the overlapping area <br> M2 DEP on M1 | 2 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| (c) | M1 (high melting point of LiF) strong forces (of attraction) between (oppositely charged) ions / strong forces (of attraction) between $\mathrm{Li}^{+}$and $\mathrm{F}^{-}$ | ACCEPT strong (ionic) bonding / strong (ionic) bonds <br> ACCEPT large amount of energy required to overcome the forces between the ions/break (ionic) bonds REJECT any reference to molecules or intermolecular forces <br> REJECT reference to atoms | 4 |
|  | M2 (good conductivity of LiF) ions are mobile | ACCEPT ions can move REJECT any reference to electrons are mobile/delocalised electrons <br> ACCEPT weak van der |  |
|  | M3 (low melting point of $\mathrm{CF}_{4}$ ) weak forces (of attraction) between molecules / weak intermolecular forces (of attraction) | Waals forces / weak London forces / weak dispersion forces <br> ACCEPT very little energy required to overcome the intermolecular forces. <br> ALLOW weak intermolecular bonds <br> REJECT any references to covalent bonds broken |  |
|  | M4 (poor conductivity of $\mathrm{CF}_{4}$ ) molecules are not charged / molecules are neutral / no charged particles | IGNORE no free electrons/all electrons used in bonding IGNORE there are no ions ALLOW no delocalised / no mobile electrons |  |
|  |  | Total | 8 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 6 (a) (i) | (to provide the) zymase/enzyme (that acts as a catalyst) | ALLOW (to act as a) catalyst ALLOW to increase the rate of reaction IGNORE to lower the activation energy IGNORE to start the reaction REJECT to provide (activation) energy | 1 |
| (ii) | (turns) milky / cloudy / turbid (then clear) |  | 1 |
|  | OR |  |  |
|  | white precipitate / white suspension / white solid (forms then disappears) |  |  |
| (iii) | $30^{\circ} \mathrm{C}$ | ACCEPT any temperature, or range of temperatures, between 25 and $40^{\circ} \mathrm{C}$ | 1 |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| (b) | Route 1: | IGNORE negative sign | 4 |
|  | M1 $\Sigma$ (bonds broken) = |  |  |
|  | $348+(5 \times 412)+360+463+(3 \times 496)$ |  |  |
|  | OR $4719 \text { (kJ/mol) }$ |  |  |
|  | M2 $\Sigma$ (bonds made $)=(4 \times 743)+(6 \times 463)$ |  |  |
|  | $\begin{array}{ll} \text { OR } & 5750(\mathrm{~kJ} / \mathrm{mol}) \end{array}$ |  |  |
|  | Route 2: |  |  |
|  | M1 $\Sigma$ (bonds broken) $=$ |  |  |
|  | $348+(5 \times 412)+360+(3 \times 496)$ |  |  |
|  | $4256 \text { (kJ/mol) }$ |  |  |
|  | M2 $\Sigma$ (bonds made $)=(4 \times 743)+(5 \times 463)$ |  |  |
|  | OR |  |  |
|  | 5287 (kJ/mol) | IGNORE negative sign |  |
|  | M3 4719-5750 (kJ/mol) / M1 - M2 |  |  |
|  | M4 - 1031 (kJ/mol) | Sign required |  |
|  | OR | ACCEPT answers given to three significant figures |  |
|  | correct evaluation of M3 |  |  |
|  |  | Correct answer with no working scores 4 |  |
|  |  | + $1031(\mathrm{~kJ} / \mathrm{mol})$ scores 3 |  |


| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 6 (c) (i) | M1 32 |  | 2 |
|  | M2 $(32 \times 15.6)=500(k J)$ | ACCEPT 499 / 499.2 |  |
|  | OR M1 $\times 15.6$ correctly evaluated | Correct answer with no working scores 2 |  |
|  | M1 \& M2 Any two from: |  | 2 |
|  | - mass of water / volume of water / amount of water <br> - distance of flame from the can <br> - length of wick | IGNORE temperature of water (at start) ALLOW distance of burner from can |  |
|  | Any two from: |  | 2 |
|  | M1 heat (energy)/thermal energy is lost (to /surroundings) | IGNORE just energy lost |  |
|  | M2 incomplete combustion (of the fuel) <br> M3 evaporation of water/fuel | IGNORE not all of the ethanol is burned |  |
|  |  | Total | 13 |

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
7 (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 0.080 mol of HCl react with 0.040 mol of \(\mathrm{MgCO}_{3}\) \\
M2 0.050 > 0.040 \\
M1 \(n\left(\mathrm{CO}_{2}\right)=1 / 2 \times 0.08(0)\) OR 0.04(0) \\
M2 \(\operatorname{vol}\left(\mathrm{CO}_{2}\right)=(0.04(0) \times 24000)\)
\[
=960\left(\mathrm{~cm}^{3}\right)
\] \\
OR \\
M1 \(\times 24000\) correctly evaluated
\end{tabular} \& \begin{tabular}{l}
ACCEPT any method involving correct ratios of moles, eg HCl to \(\mathrm{MgCO}_{3}\) is \(2: 1\) 0.08 to 0.05 is \(2: 1.25\) \\
ACCEPT correct calculations involving masses \\
Correct answer with no working scores 2 \\
\(1920\left(\mathrm{~cm}^{3}\right)\) scores 1 mark
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 \(M_{r}\left(\mathrm{MgCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}\right)=203\) \\
M2
\[
\begin{aligned}
\% \text { yield } \& =((5.5 \div(203 \times 0.050)) \times 100 \\
\& =54
\end{aligned}
\] \\
Any one of: \\
- some of the crystals remained in the filtrate (after cooling and filtration) \\
- the solution was not allowed to cool for long enough (for complete crystallisation) \\
- magnesium carbonate is impure
\end{tabular} \& \begin{tabular}{l}
M2 CSQ on M1 \\
ACCEPT any number of significant figures except one (eg reject 50) \\
Calculator value is 54.1871921182 \\
REJECT answers > 100 \\
IGNORE references to side reactions REJECT not all of the magnesium carbonate reacted
\end{tabular} \& 2

1 <br>
\hline \& \& Total \& 7 <br>
\hline
\end{tabular}

| Question number | Answer | Notes | Marks |
| :---: | :---: | :---: | :---: |
| 8 (a) | M1 rate of forward reaction = rate of backward reaction <br> M2 concentrations of reactants/products remain/stay constant | IGNORE <br> forward reaction = backward reaction <br> ACCEPT amounts/masses for concentrations ACCEPT do not change for remain constant <br> ALLOW colour remains constant <br> ALLOW pressure remains constant <br> IGNORE <br> concentrations/amounts of reactants and products are the same/are equal | 2 |



| Question <br> number | Answer | Notes | Marks |
| :--- | :--- | :--- | :---: |
| 8 (c) | M1equilibrium has shifted to the left / <br> equilibrium has shifted to the $\mathrm{NO}_{2}$ side / <br> equilibrium has shifted to the reactants <br> side <br> ORmore $\mathrm{NO}_{2}$ has been produced / more <br> reactants have been produced <br> m2 <br> (therefore) backward reaction is <br> endothermicIGNORE references <br> to Le Chatelier's principle <br> eg an increase in temperature <br> favours the reaction that <br> reduces the temperature | 2 |  |
|  | ACCEPT (forward) reaction is <br> exothermic | Total | $\mathbf{8}$ |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL

